Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

نویسندگان

  • Qingyue Yu
  • Noe T. Alvarez
  • Peter Miller
  • Rachit Malik
  • Mark R. Haase
  • Mark Schulz
  • Vesselin Shanov
  • Xinbao Zhu
چکیده

Individual Carbon Nanotubes (CNTs) have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs) within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively). Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm-1 for cross-linked thread, and 3984.26 S·cm-1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles.

IO N Utilizing the full mechanical capabilities of individual carbon nanotubes (CNT) – which can exhibit tensile strength and elastic modulus of up to 1TPa and 100 GPa, respectively [ 1–4 ] – has motivated a great deal of interest in CNT based nanocomposite materials. [ 5–10 ] Despite this signifi cant scientifi c effort, the strength, modulus, and toughness of CNT based fi bers and composites ...

متن کامل

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

متن کامل

Carbon Nanotube Enhanced Composite Materials

Non covalent functionalization by π stacking was accomplished by treating multi walled carbon nanotubes (MWNTs) through the use of Kentera, a conjugate rigid rod polymer. The functionalized MWNTs were then introduced into the epoxy resins through a combination of shear and elongation forces. The resulting epoxy resin (containing MWNTs) was then impregnated with carbon fiber under hot-melt condi...

متن کامل

From Carbon Nanotube Yarns to Sensors: Recent Findings and Challenges

Carbon nanotube (CNT) arrays can be drawn into a web and then twisted into threads. These CNT threads contain thousands of carbon nanotubes in their cross-section and can be further composed into yarns consisting of one or more threads. CNT yarns exhibit significant mechanical stiffness and strength and low electrical resistivity. More importantly, CNT yarns exhibit piezoresistance that could b...

متن کامل

Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016